高校受験チェック理科 (2022年6月18日改訂)

理科は3年間の積み上げではないので、中3の学習は理解できても、中1の内容はまったく忘れているといったこともあります。そのような方も、無理なく学習できる構成なので、だれもが短期間に、高校受験の全範囲を復習することができます。もちろん理科の学習が進んでいなくて、短期間に復習したい方にも最適です。この教材の学習を終えたら、「高校受験理科」にも挑戦してください。さらに、高得点がねらえます。

■□■ 目次 ■□■

1. 物質

・水溶液の性質(解説)

水溶液の性質

ガスバーナーの使い方

物質の溶解と分離

物質の溶解度(溶解度曲線の見方)

物質の溶解度(応用)

ろ過のしかた

メスシリンダーの使い方

上皿てんびんの使い方

・水溶液の性質(チェック)

水溶液の見分け方(1)

水溶液の見分け方(2)

実験器具の使い方

ガスバーナーの使い方

溶質•溶媒•溶液

溶解度

物質の密度

・気体の発生と性質(解説)

二酸化炭素の性質

酸素の性質

水素の性質

アンモニアの性質

気体の製法(まとめ)

気体の性質と捕集法

・気体の発生と性質(チェック)

気体の性質(1)

気体の性質(2)

気体の性質(3)

・物質の状態変化(解説)

状態変化と体積,質量

密度

密度の意味

密度(応用)

固体のとける温度変化

水の三態と温度変化

物質の融点・沸点と状態

蒸留実験

混合物の沸点のグラフ(水とエタノール)

・物質の状態変化(チェック)

純物質と混合物

物質の融点・沸点

混合物の分離(1)

混合物の分離(2)

・化学変化と化学反応式(解説)

化学変化(用語チェック)

エタノールの燃焼

スチールウール(鉄)の燃焼

https://www.kyoiku-soft.com

銅の酸化

鉄と硫黄の反応

炭酸水素ナトリウムの分解

炭酸水素ナトリウムの分解実験

酸化銀の分解

化学変化のまとめ

化学変化(総合)

原子と原子記号(チェック)

化学式(チェック)

化学式・化学反応式における数字の意味

化学反応式のつくり方

代表的な化学反応式

化学反応式のモデル

・化学変化と化学反応式(チェック)

物質と原子・分子

元素記号

化学式の基本(1)

化学式の基本(2)

単体と化合物

化学式(1)

化学式(2)

いろいろな化学変化

いろいろな化学反応式(1)

いろいろな化学反応式(2)

・化学変化と質量の変化(解説)

水の電気分解

質量保存の法則

銅の酸化と質量の変化

酸化銅の還元と質量の変化

金属の酸化と質量の変化(過不足)

金属の酸化と質量の変化(2種類の金属)

・化学変化と質量の変化(チェック)

質量保存の法則

化学変化と質量

水の電気分解

水の合成

金属と酸の反応

・水溶液とイオン(解説)

電解質と非電解質

原子とイオン

電離

・水溶液とイオン(チェック)

電解質と非電解質

電解質のモデル図

イオンのモデル図

雷離とイオン

塩化銅の電気分解(実験)

塩酸の電気分解(実験)

電離の式

電離の式

・電池とイオン(解説)

金属のイオンへのなりやすさ

電池のしくみ

・電池とイオン(チェック)

電池

電池

電池

メッキ

・酸とアルカリ(解説)

酸・アルカリの性質

中和と塩

酸と金属の反応(発生する気体の量)

・酸とアルカリ(チェック)

酸・アルカリの性質

酸・アルカリの性質を確かめる実験

中和

中和とイオン

中和と濃度・体積①

中和と濃度・体積②

https://www.kyoiku-soft.com

2. エネルギー

・光と音(解説)

光の反射と屈折(基本)

光の反射

光の屈折

全反射

とつレンズでの光の進み方

とつレンズの実像と大きさ

とつレンズと虚像

音の伝わる速さ

音の大小・音の高低

・光と音(チェック)

光の反射(1)

光の反射(2)

光の屈折

とつレンズによる像のでき方(1)

とつレンズによる像のでき方(2)

弦と音の高低

音の凍さ

・力と圧力(解説)

力とは

重さと質量

力の大きさとばねののび

ばねの直列・並列つなぎ

圧力

・力と圧力(チェック)

2物体間にはたらく力

重さと質量(1)

重さと質量(2)

重さと質量(3)

力の大きさとばねののび(1)

力の大きさとばねののび(2)

力の大きさとばねののび(3)

力の大きさとばねののび(4)

圧力

圧力の計算

・電流と電圧(解説)

電流計・電圧計のつなぎ方

電流計の読み取り

電圧計の読み取り

オームの法則

抵抗の直列つなぎと電流・電圧・抵抗

抵抗の並列つなぎと電流・電圧・抵抗

電流と電圧(まとめ)

電流と電圧(抵抗の直列・並列つなぎ)

電流と電圧(チェック)

電流計と電圧計のつなぎ方(1)

電流計と電圧計のつなぎ方(2)

電流計と電圧計の指針の読み

オームの法則

抵抗とオームの法則

抵抗の直列つなぎ(1)

抵抗の直列つなぎ(2)

抵抗の並列つなぎ(1)

抵抗の並列つなぎ(2)

・電流による発熱(解説)

電流による発熱と電力

電力と熱量

電流による発熱(総合)

電流による発熱(チェック)

電流による発熱(1)

電流による発熱(2)

電力

・電流と磁界(解説)

磁石による磁界

導線を流れる電流による磁界

コイルに流れる電流による磁界

電流が磁界から受ける力

電流が磁界から受ける力の向き

モーターのしくみ

https://www.kyoiku-soft.com

電磁誘導

誘導電流の向き

電流と磁界(総合)

電流と磁界(チェック)

磁界と磁力線

電流のつくる磁界

コイルのつくる磁界

電流が磁界から受ける力の考え方

電流が磁界から受ける力

電磁誘導(1)

雷磁誘導(2)

・力のはたらき(解説)

力のつりあいと作用・反作用 力のつりあいとばね 力のつりあいと滑車

・力のはたらき(チェック)

力のつりあい

・物体の運動(解説)

力と物体の運動

台車の運動と力のはたらき方

記録タイマーを使った台車の運動の読み取り

記録タイマーの記録と速さ

落下運動

台車の運動とグラフ

物体の運動(チェック)

等速直線運動(速さと時間)

等速直線運動(グラフ)

等速直線運動と力

落下運動(速さの変わる運動)

速さの変わる運動(斜面)

速さの変わる運動(摩擦力)

・エネルギー(解説)

エネルギー

位置エネルギー

運動エネルギー

力学的エネルギーの保存

化学変化とエネルギー

エネルギーの移り変わり

エネルギーの確保

放射線の種類1

放射線の種類2

・エネルギー(チェック)

エネルギー

位置エネルギー

運動エネルギー

運動エネルギーと質量・速さ

運動エネルギーと位置エネルギー

エネルギーの移り変わり

化学エネルギーと電池

いろいろなエネルギーの移り変わり

エネルギー資源

放射線の種類1

放射線の種類2

3. 生命

・生物の観察・植物の種類(解説)

植物地図を作ろう

顕微鏡の使い方の手順

顕微鏡の扱い方のポイント

顕微鏡の倍率と明るさ

ルーペ・双眼実体顕微鏡の使い方

タンポポのつくり

水中の微生物

植物のなかま

被子植物の花のつくりとはたらき

マツの花のつくり

単子葉類と双子葉類

植物のなかま分け

・生物の観察・植物の種類(チェック)

顕微鏡の使い方

ルーペの使い方

https://www.kyoiku-soft.com

水中の微生物(1)

水中の微生物(2)

植物の種類

種子植物のなかま

・植物のつくりとしくみ(解説)

植物のからだのつくりでの重要な用語

道管と師管

葉の断面のようすと光合成

気孔のはたらき

蒸散を調べる実験

光合成

光合成の学習で出てくる試薬

光合成を確かめる実験

光合成の行われる条件

光合成と呼吸

光合成と呼吸の実験

植物の呼吸

・植物のつくりとしくみ(チェック)

植物のからだのつくり(1)

植物のからだのつくり(2)

細胞の呼吸(1)

細胞の呼吸(2)

光合成のしくみ

光合成と呼吸(1)

光合成と呼吸(2)

光合成と呼吸(3)

・動物の種類と特徴(解説)

草食動物と肉食動物

動物のなかま(用語チェック)

セキツイ動物の特徴

セキツイ動物のなかま分け

無セキツイ動物の特徴

・動物の種類と特徴(チェック)

動物の種類と特徴(用語)

セキツイ動物の分類(1)

セキツイ動物の分類(2)

セキツイ動物の分類(3)

・消化と吸収(解説)

消化と吸収での基本用語

消化液のはたらき

吸収のしくみ

ヒトの消化器官と消化液

だ液のはたらき

消化と吸収(チェック)

だ液のはたらき(1)

消化酵素

消化と吸収(1)

消化と吸収(2)

•血液•呼吸•神経系(解説)

血液の循環と排出(用語チェック)

肺のつくりとはたらき

呼吸運動のしくみ

ヒトの心臓のつくり

ヒトの血液の循環

メダカの尾びれの観察 血液の循環と物質の流れ

排出のしくみ(じん臓のはたらき)

行動のしくみと神経(用語チェック)

目のつくりとしくみ

耳のつくりとはたらき

刺激の伝わり方と反射

骨格と筋肉のしくみ

・血液・呼吸・神経系(チェック)

血液のはたらき(1)

血液のはたらき(2)

血液の循環(1)

血液の循環(2)

肝臓とじん臓

行動のしくみと神経

目と耳のつくり

https://www.kyoiku-soft.com

行動のしくみと神経

・細胞と生殖(解説)

細胞と細胞分裂(用語チェック)

植物や動物の細胞のつくり

細胞分裂の観察方法

細胞分裂のようす

細胞分裂と成長

生物のふえ方(用語チェック)

カエルの有性生殖と発生

植物の有性生殖

有性生殖と無性生殖

形質と遺伝

細胞と生殖(チェック)

細胞のつくり

細胞分裂の順序

細胞分裂(1)

細胞分裂(2)

受精と発生

植物のふえ方

染色体と遺伝

生物のふえ方

遺伝のしくみ(解説)

遺伝のしくみ

顕性の法則

いろいろなかけ合わせ

子葉の色・さやの形などの遺伝

・遺伝のしくみ(チェック)

精細胞・卵細胞の遺伝子

遺伝のしくみ

エンドウの子葉の色の遺伝

マツバボタンの花の色の遺伝

いろいろな遺伝子[ショウジョウバエなど]

・生物の進化(解説)

セキツイ動物のなかま

相同器官

始祖鳥[シソチョウ]の化石

動物の進化のようす

動物の進化

・生物の進化(チェック)

植物の特徴

植物の進化の道すじ

動物のなかまと進化

生物の進化の道すじ

4. 地球

・地球と太陽系(1)(解説)

太陽のようす

太陽の形

太陽の観測

透明半球上での太陽の1日の動き(1)

透明半球上での太陽の1日の動き(2)

太陽や星の日周運動

北の空の星の1日の動き

南の空の星の1日の動き

季節と太陽の動き

季節と昼の長さ

地球の自転・公転と星の動き

・地球と太陽系(1)(チェック)

太陽のすがた

太陽の見かけの動き(1)

太陽の見かけの動き(2)

星の日周運動

星の年周運動

・地球と太陽系(2)(解説)

地球の公転のようす

太陽の南中高度と緯度

地球の公転での図の見方

地球の公転と星座の移り変わり(1)

地球の公転と星座の移り変わり(2)

太陽系のつくり

金星の見え方

https://www.kyoiku-soft.com

・地球と太陽系(2)(チェック)

地球の公転と季節の変化

地球での方位の見方

太陽の南中高度

地球の自転と公転

地球の自転と公転にともなう現象

金星の見え方

・空気中の水蒸気(解説)

乾湿計

飽和水蒸気量•湿度

露点と水蒸気量

グラフからの露点の求め方

気温と湿度の関係

雲や霧(きり)のでき方

・空気中の水蒸気(チェック)

空気中の水蒸気

湿度の式

乾湿計

湿度の求め方

飽和水蒸気量と露点

・天気の変化(解説)

天気図記号(1)

天気図記号(2)

気圧と天気の変化(用語チェック)

気圧と風の向き

低気圧と高気圧

寒冷前線と温暖前線(1)

寒冷前線と温暖前線(2)

・天気の変化(チェック)

気圧と風

高気圧と低気圧

天気図の読み取り

低気圧と前線(1)

低気圧と前線(2)

・地層とたい積岩(解説)

地層と過去のようす(用語チェック)

たい積岩の種類

れき岩,砂岩,泥岩の地層からわかること

示相化石と示準化石

・地層とたい積岩(チェック)

地層のでき方

化石

たい積岩の特徴

たい積岩の種類

•地震•火成岩(解説)

地震の伝わり方(用語チェック)

地震の伝わる速さ

地震計の記録の読み取り

地震の伝わり方

震度とマグニチュード

日本での地震の分布

火山活動と火成岩(用語チェック)

火成岩の種類(チェック)

造岩鉱物の特徴

火成岩と造岩鉱物

火山と溶岩の性質

・地震・火成岩(チェック)

地震

深度とマグニチュード

震源と地震による被害

地震の伝わる速さ(1)

地震の伝わる速さ(2)

火成岩のでき方

火成岩の組織

火成岩の種類

火成岩と造岩鉱物(1)

火成岩と造岩鉱物(2)

5. 自然と人間

・生物どうしのつながり(解説)

生物どうしのつながり(用語チェック)

食物連鎖

生物の個体数のつりあい

分解者のはたらき

自然界での物質の循環

物質の循環とエネルギーの流れ

・生物どうしのつながり(チェック)

生物どうしのつながり(1)

生物どうしのつながり(2)

土の中の生物(1)

土の中の生物(2)

分解者と緑色植物

物質の循環とエネルギーの流れ(1)

物質の循環とエネルギーの流れ(2)

・物質の利用と人間(解説)

天然物質と人工物質

・物質の利用と人間(チェック)

天然物質と人工物質

・科学技術と人間生活(解説)

科学技術の発達

・科学技術と人間生活(チェック)

科学技術の発達1

科学技術の発達2

・地球と環境(解説)

二酸化炭素と地球温暖化

大気汚染

フロンガスとオゾン層の破壊

・地球と環境(チェック)

地球と人間

環境問題

・持続可能な社会(解説)

持続可能な社会とは

持続可能な社会の実現

・持続可能な社会(チェック)

持続可能な社会の実現に向けて